Digraph Self-Similar Sets and Aperiodic Tilings
نویسنده
چکیده
Self-similarity is a concept often associated with fractal geometry. There are many interesting self-similar sets in the plane which would not generally be considered fractal, however (although their boundaries might be fractal). Such sets provide a fresh way of looking at tilings of the plane. Furthermore, a generalization of self-similarity, called digraph self-similarity, provides a way to construct aperiodic tilings.
منابع مشابه
Fixed-point tile sets and their applicationsI
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...
متن کاملFixed Point and Aperiodic Tilings
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This constr...
متن کاملPenrose tiling - Wikipedia, the free encyclopedia
A Penrose tiling is a nonperiodic tiling generated by an aperiodic set of prototiles named after Roger Penrose, who investigated these sets in the 1970s. Because all tilings obtained with the Penrose tiles are non-periodic, Penrose tilings are considered aperiodic tilings.[1] Among the infinitely many possible tilings there are two that possess both mirror symmetry and fivefold rotational symme...
متن کاملFixed-point tile sets and their applications
An aperiodic tile set was first constructed by R. Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many fields, ranging from logic (the Entscheidungsproblem) to physics (quasicrystals). We present a new construction of an aperiodic tile set that is based on Kleene’s fixed-point construction instead of geometric arguments. This const...
متن کاملUniform Subadditive Ergodic Theorem on Aperiodic Linearly Repetitve Tilings and Applications
The paper is concerned with aperiodic linearly repetitive tilings. For such tilings we establish a weak form of self-similarity that allows us to prove general (sub)additive ergodic theorems. Finally, we provide applications to the study of lattice gas models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001